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Abstract

For the purpose of supporting the experimental work in
ionizing a hydrogen or deuterium gas by high current dis-
charges, a simple model is presented which describes the
ionization by ohmicly heated electrons. Simple scaling laws
are introduced by normalizing the equations with respect to
the filling density. This is possible if the considerations
are restricted to a density region where binary collisions
prevail and if homogeneity of the plasma is assumed. The
results provide values for the minimum current density necessary
to ionize the gas in a certain time and for a given filling
density.




I. Introduction

In order to produce hot and dense plasmas in theta pinch
experiments it is necessary to start out from a fully ionized
and well conducting plasma. The conversion of the neutral gas
into a plasma is furnished by so-called preheating discharges
where an axial or an azimutal current is passed through the gas.
Breakdown, as well as ionization, exhibit no major difficulties
at filling pressufes above fifty mTorr whereas ignition of the
neutral gas and ionization becomes quite intricate at filling
pressures of ten mTorr and below. One of the causes, of course,
is that collisions become less frequent at low densities and
losses become large due to fast diffusion to the walls.

Notwithstanding the fact that many and involved processes are
dominant in the gas during breakdown and ionization, the
essential parameters which can be altered in an experiment are
only a few: the amplitude and duration of the voltage or

current pulse applied to the discharge. The geometric dimensions
as for instance the distance between the electrodes are regarded
as fixed.

From a pragmatic point of view, the problem of how to ionize the
gas is solved for a whole density regime if the gas can be
successfully ionized at one distinct density or filling pressure,
and provided the density scaling laws for voltage and current
amplitude and time are known. However similarity laws do not
necessarily exist over an extended density region because pro-
cesses dominant at a certain density may be replaced by other
processes at somewhat higher or lower densities. For example
photorecombination is predominant at low densities, while three
body recombination is dominant at high densities.

Nevertheless it is useful to look for similarity laws and simple
models based on them to provide working hypotheses for the
experimental work. In the following a discussion of the ionization




of a hydrogen gas by thermal elelctrons is given. The energy
source for the electrons is ohmic dissipation of electric
currents flowing through the plasma. These considerations are
intended to answer the question of what current density or

what electric field strength are necessary to fully ionize a
gas of an initially low degree of ionization in a given time.
This problem can be normalized with respect to the density by
introducing characteristic quantities and by assuming binary
collisions prevail in the plasma. Because of the assumption of
ohmicly heated electrons the results are applicable only if the
electric field within the plasma is small compared to the critical
field as given by Dreiser 1) or by two stream instability
criteria. Thus the relations presented in the following are not
valid for processes occurring during the phase of breakdown
where electrons and ions are accelerated directly in the exter-
nally applied fields.

First a description of the equations and the assumptions leading
to them is given. Next several solutions for different parameters
are discussed. Finally the relevance of the results for real
discharges is investigated and neglected effects such as the
compression of the plasma and diffusion are discussed.

IT. The Formulation of the Equations

The derivation of the magnetohydrodynamic three fluid equations
have been given by several authors 2). Diichs %) has applied
the equations to the problem of theta pinch compressions in case
of a not fully ionized plasma. His report has been taken as a

basis for the formulation of the following equations.

A homogeneous hydrogen plasma consisting of electrons, ions and
neutrals is considered. Molecules are not taken into account.

A current is flowing through the plasma but Lorentz forces are
neglected. Because there is no space dependence, according to the
requirement of homogeneity of the plasma, all quantities are time
dependent only and the plasma can be described by a set of normal
differential equations. The requirement of quasineutrality yields
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n, =ny; =n. The equation of continuity of each component de-

generates then to:
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(C&n is the change of density by ilonizing and recombining
collisions. It will be defined below. The density of the neutrals
is denoted by ng.

The change of energy with time of each species of particles is
given by:
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In order to abreviate, To’ ’I‘i and Te are set for kTo, kTi and kTe.
The first term at the left side in all three equations is the
rate of change of temperature. The second term left is the
gain or loss of energy of one species by the gain or loss of
particles of that species.‘ZSEo, [&Ei, and .[BEe at the right
stand for the rate of change of energy by collisions.

Introducing the rate coefficient for ionization S and the rate
coefficient for recombination Q the change of density per sec
and cm3 is given by:

zﬁ&n = nns - n°Q (6)
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The rate of change of energy by collisions per sec and cm3
for the neutrals comprises two terms for energy transfer from
the ions by recombination and to the ions by ionization, and

two terms accounting for the energy transfer by collisions with
electrons and ions.

Accordingly, but including a term accounting for the relaxation
of energy from the electrons, the rate of change of energy by
collisions for the ions can be written as:
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R and Y are the energy exchange rate coefficients for electron
neutrals and ion neutrals in case of unequal temperatures. t

€eq
is the electron-ion relaxation time. In the expression forZXEe

for the electrons finally appear the ionization energy )6{ and
the Jjoule heating term Oljg
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with Gz being the specific resistivity and JL the current density.

The rate coefficients are defined by the product of the cross-
section of the process in question and the velocity of the

colliding particle averaged over the distribution function, which

is here supposed to be Maxwellian. If all the rate coefficients

S, Q, R and Y are assumed to be independent of the density, which

is done here until further comments are made, then all collision
rates in equation (6), (7), (8) and (9) are proportional to n® or

nn . Since the electron 1on1relaxation time teq as given by

Spitzer is proportional to = s except for a weak dependence on

the density via the Coulomb logarithm, the term for the ion electron
relaxation in (8) and (9) is proportional to n°. In order to
eliminate the densities from equation (1) through (5) it suggests
itself to introduce the degree of ionization given by = n/nH and
ny being the number of ions and hydrogen atoms ny = ng + n per
cubic centimeter, which is a constant because of the assumption

of homogeneity. All that is needed, then, 1s to replace the

real time t by l’:= % , the relaxation time by teq = %?A"H
and finally the current density by j =1 - ny and the density
drops out in all equations. The such normalized differential
equations consist then of one "continuity" equation describing the
change of the degree of ionization:

%:o((l——a)g s gl (1o)

and three energy equations for the three temperatures:
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where all the rate coefficients are functions of the temperatures,
S and Q and R depend on the electron temperature alone, while

Y depends on both Ti and TO. For given initial conditions and a
given normalized current pulse i(T) these equations can be solved
to yield o(,Te, Ti and To as functions of T . The physical
problem described is the ionization of a gas by a current pulse,
that is, by Ohmicly heated electrons, without assuming equilibrium
conditions for ionization and recombination processes as would be
done if the Saha equation were used. The similarity laws valid for
the problem described are evident from the normalization of the
quantities: t ==?%{F iyt W) =idE o ny. The dependence of the degree

of ionization on time for different filling densities ny stays
similar if the time scale is shortened or stretched such that

T e Ny stays constant and if the current pulse is diminished or
enhanced such that j/nH remains the same function of @© . Then
also the heating rate per electron stays the same function of T
as can be seen from j/nH = O(evD, where e is the charge of an
electron and Vh the electron drift velocity.

The assumption of the independence of the rate coefficients S and
Q on density is questionable because of three body recombination
at higher densities and because of the influence of the collision
limit %) which is a function of electron density, whereas the
electron-atom and ion-atom rate coefficients are independent of
the density. Bates, Kingston and McWhirter 4) have derived the




collisional-radiative rate coefficients S and Q as functions of
electron temperature and density. Griem 5) has given a good

analytical approximation which is used here in a slightly simpli-
fied form.

In order to determine for which filling densities the similarity
relations given above are valid it is sufficient to consider just
the electrons to be heated, and to leave the ions and atoms cold,
that 1s we assume that relaxation from the electrons to the ions
is a slow process compared with the ionization of the gas. The

two differential equations for this case are:

%_ = x(l-x)-§S— x"Q (10)
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Instead of using the current density i = j/n it is advantageous
to take the normalized electric field w = iwL-. ///A . In the next
section examples of solutions are given of the rise of ionization
degree for different densities Ny and for different constant

field strengths w applied to the plasma. Before that can be done

S and Q must be defined and proper dimensions introduced.

The temperature is measured in electron voltg, the density ny in
lo particles per cc, and the time t in lo -~ sec. The character-
Btic time @~ = ng - t is then one if the density ny is 1016 cm"3
and if t = l/usec. Similarily the dimensions of the rate coeffi-
cients are chosen to be lo-10 cmj/sec. The specific resistivity
in Ln.cm which consists of a term due to electron-ion interaction

and of a term due to electron-neutral interaction, is then 6):
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and the electron-atom collision cross-section T):
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The ionization cross-section S can be divided into two parts
one of which does not explicitly depend on the density and an-
other one of which is proportional to the electron density.

These two terms can be written according to (5):
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MM is the quantum number of the so-called collision 1limit which
has to be evaluated by iteration from the following equation (5):

. /7 -7
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The rate coefficient for recombination can also be divided into
a term only weakly dependent on the electron density, which is

that describing photo recombination, and one being proportional
to the electron density describing three body recombination:

R= Q+Q,
- @R Eerel] e

= 2z
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*
E is defined by the integral:

x (23)

and X0 by :
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Analytical expressions for the rate coefficients have been used in
preference to tables as given by Bates, Kingston and McWhirter U4).
The involved dependence of the rate coefficients on the electron
temperature implies that there is no hope for finding analytical
solutions of equation (lo), (11), (12) and (13) even for the simple
case of a constant current density.

Finally, it should be noted that in case of equal electron, ion
and neutral temperatures, two simple differential equationé are
again obtained from equation (lo) through (13) which are the same
as equations (lo) and (14) except that the right side of equation
(14) is to be multiplied by a factor

[+ X

III. Some Solutions and the Validity of the Similarity Relations.

Because of the dependence of the rate coefficients for ionization
and recombination on the density, and because of the weak dependence
of the resistivity on the density, the normalization of the equat-
ions above could not be carried through completely. In order to
obtain solutions, therefore, not only the initial values of the
varibales and the function i(T) or w(T) have to be given, but
still also a value for the filling density ny- However the

hope is that a solution for one value of Ny is representative

for all solutions over an extended density interval. In order

to check this it is sufficient to study a reduced set of
equations, namely (10) and (14). That is, it is assumed that

only the electrons are heated; energy transfer to ions and
neutrals is neglected. This is a valid procedure because the
filling density Ny affects the rate coefficients S and Q which

are retained in (10) and (14) whereas it is of little influence

on the other rate coefficients and transport coefficients.
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In figure 1 a typical set of solutions for four different values
of the normalized field w is given. Instead of a normalized

current density i@t) = ,j/nH a constant electric field w = E/nH
was superposed upon the plasma. This gives a more realistic
picture than a constant current pulse and avoids too high drift
velocities in the beginning of the discharge, when the degree of
ionization is still small. The current i( @ ) is then determined
by the specific resistivity‘?L, that is, by the electron tempera-
ture and the degree of ionization.

The actual field applied to the plasma is determined by E = ng * w

in volts per centimeter if n, is inserted in lo16 cm_3. The

H
initial values for T = 0 were (= 0.0l and Te = 0.9 eV. The

filling density was chosen to be n, = 0.066 em™” in units of

1016 per cc as mentioned above. Th?s density corresponds to a
filling pressure of 1o mTorr. The time Q:; in which the gas is
completely ionized and o reaches the value one depends strongly
on the field applied or on the current passed through the gas. The
electron temperature rises steeply at early times until ionization
sets in, and stays approximately constant thereafter until ioniza-
tion has been completed. The electron temperatures in figure 1

are in the flat part when effective ionization takes place for

the cases w = 100, 70, 50 and 3o: Te = 14, 10.5, 8 and 5 electron
volts approximately. These values are by a factor of 4 to lo
larger than what one is used to from equilibrium considerations,
that is, when the ionization process proceeds slowly.

Examples for solutions for different densities n, are given in

figure 2 for a normalized field of w = loo. The salues of

ng = 0.0166, 0,066, and o0.66 em™ correspond to 2.5, lo and loo
mTorr filling pressure. The curves coincide indeed well enough
that the normalization with respect to the density is justified.

The solution for ny = 0.066 cm™> or lo mTorr filling pressure
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can therefore be taken as representative for the density region
0.0066 £ Ny < 0.66 cm™ or 1 éé;ﬁlééloo mTorr. The scaling
fails at higher densities because of the stronger variation of
the collision limit with the density as compared to lower den-
sities.

In the case of lower electron temperatures, that is for smaller
fields w, the dependence of the solutions on the density is more

pronounced, as shown in figure 3.

The ionization time Q;deviates here at the high density ny = 0.660
already by about 25 percent from the time given by the solutions
> ana ny = 0.166 cm™>. How-
=5

ever within the scope of the model the curve for ny = 0.066 cm

for the lower densities ny = 0.066 cm”

can still be regarded as to represent all solutions for w = 30 in
the pressure region 1f§1%{ééloo mTorr. The comparatively low
electron temperature in the high density case (nH = 0.66) is not

a consequence of an enhanced recombination rate. The recombination
rate is still negligible compared with the ionization rate. The
latter, however, is larger because of lowering of the collision
limit due to the higher density.

The normalized current densities for the solutions shown in figure
1 are displayed, in figure 4 as a function of & . The density

>

For w = loo and w = 30 the curves i( &) for ny = 0.0166 and 0.66

parameter is ny = 0.066 ecm © or lo mTorr for the solid curves.
cm_3 are also shown dashed. The separation of the curves is due to
the change of the resistivity with temperature. However, it should
be emphasized that even if the filling pressure differs by a
factor of lo the normalized currents differ by not more than a
factor of two. The values of i(XX) can be therefore represented

by the solid curves for the pressure range lféphiéé loo mTorr.

For estimates of the current densities necessary to ionize a hydro-

gen gas from 1 % to loo % the relation shown in figure 5 is
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convenient where the values of i for & = 0.5 or fifty percent
ionization were taken and plotted over the ionization time. The
deviations due to different filling pressures from 1 to loo mTorr
are shown by the error bars.

The solutions presented were numerical solutions obtained using

a computer. However, the curves in figure 1 imply that good
estimates can be gained without solving the two differential
equations. In the temperature and density region considered above,
that is for Teé 2 eV and lépHé loo mTorr, the term describing
the recombination in the continuity equation (lo) can be safely
neglected to yield the equation:

dot _ x(1=0¢) S
o(.‘l?'—“(l ) (25)

The numerical solutions showed further (fig. 1) that during the
time of effective ionization the electron temperature stays
approximately constant as in a boiling liquid. For a constant
electron temperature the rate coefficient S can also be regarded
as constant and equation (25) can be integrated:

&x=0.7

X
S't;:—‘ 6\/1.—'—_’_—5( (26)
x= 0.0l

For the lower boundary the same value of & = o.0l as for
the numerical solutions was chosen. A remark on this value and

the electron drift velocity is made in chapter IV.

The ionization time is obtained if proper boundary values are

inserted:

o

c
T. =~ S (27)
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Usually a certain value for 'Z; is envisaged in an experiment
and in order to reach this value the ionization coefficient has

to be as large as given by equation (27). With a fixed value for

S also the electron temperature is determined, which can be obtained
using tabulated values S(Te) as given by Bates et al. 4) or

taking the relations (18), (19) and (20) above. The fact that

the electron temperature is approximately constant in time allows
one also to neglect the time derivative in equation (14). Setting

for D(O-—d) an average value of 0.2 yields then for the normalized
current density:

. Z)
S (3.2./07_ /.5-77;_7‘)&/.5) (28)

It remains to determine the resistivity from (15) after setting
| — /

-~ and taking q from (16):
(4

b=

=9 o8 iy ol :
Q:E.ZS-ID-T /2+3.5s‘-10.(5+c[- le/-z'é.7-107) (29)

The values for i obtained by this procedure are plotted in

figure 5 in order to compare them with the values obtained by the
numerical solutions. They compare favorably indeed and good
estimates are possible for the minimum current density necessary
in a hydrogen gas to ionize it in the required time.

Finally a few solutions for another extreme case are shown in

figure 6. Here a sufficiently fast energy flow from the electrons
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to the ions and neutrals was assumed such that the temperatures
of all components are equal at all times. This is easy to take
into account by multiplying equation (14) by a factor of |jfa
at the right side. The solutions for the electron temperatures
show a slower rise because the neutrals and the ions must be
heated. The degree of ionization stays low until the temperature
becomes sufficiently high to ionize the gas in the time scale
of the problem considered. Again the normalization is justified
for the high field strength case (w = loo, 7o) as can be seen
from the solutions for different filling densities. However for
the lower values of the field w)( w o= 30))the solutions for

different filling pressures start to separate.

If the neutrals stay cold and only the electrons and ions are
heated, essentially the same curves are obtained as shown in
figure 1, where the electrons have been regarded only. The curves
only stretch out in time a little more; however, by less than a
factor of two.

IV. A Discussion of the Applicability of the Model to Real
Discharges.

In order to arrive at such a simple model as described above a
series of assumptions had to be made the most relevant of which
will be discussed here.

1) The assumption of Ohmicly heated electrons
One of the fundamental questions is whether the electrons are
really heated by Ohmic dissipation or if they gain energy by
direct acceleration in the external fields. At low electron
densities and not too small electric fields the latter is cer-
tainly true. The complete motion of the particles in the electric
and magnetic fields including space charge distortions, has
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then to be investigated. Usually this is referred to as the
breakdown phase of a discharge 8). Chodura 9) has discussed
the problem of breakdown in a theta pinch configuration in
great detail and several experimental investigations are
reported 10, 11). However soon after breakdown the electric
field within the plasma falls below the critical field as
defined by Dreiser 1) or, what is essentially the same, the
electron drift velocity becomes less than the electron thermal
velocity. The electrons are then heated by Ohmic dissipation.
The latter inequality is easy to check in the formulation
used here. The normalized current density i was defined by:

Ue
l M 19-
XMy U o s (30)
L /%H . >

=

with vy being the electron drift velocity and e the electron
charge. In the units used here, and with VD in centimeter
per second, the normalized current becomes:

1285956+ 102 - vp

For Ohmic dissipation the inequality

Te 1/2
vp &L vy o= () (31)

e
must hold.

Using the normalized current densities instead of the veloci-
ties and denoting the critical current, which corresponds to
an electron drift velocity equal to the electron thermal
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velocity by ic, yields:

N e .
1L 1, =6.7 - 10.0(.‘4 lo (32)

if Te is inserted in electron volts. The current ic has been
evaluated for the temperatures of the solutions w = loo, w = 30
and ny = 0.066 or lo mTorr and compared in figure 7 with the
actual current as obtained from the solutions of figure 1. In
the low field strength case (w = 30) the electron drift veloci-
ty is at all times considerably smaller than the electron
thermal velocity. In the high field strength case (w = loo0)

the drift velocity approaches the thermal velocity in the be-
ginning but soon falls to lower values. However, ic does not
decrease to much less than half of i. Evidently in the pressure
region considered a normalized field of about w = loo is the
upber limit for the applicability of the model. These considera-
tions also justify the value of (X = 0.0l as initial value.

In the high field strength case the concept of Ohmic heating
cannot be Jjustified anymore for still lower initial values

of X

The neglect of dissociation

A severe assumption is to start out from an already dissociated
hydrogen gas instead of taking H2 molecules. However not all
the rate coefficients of the processes and indeed not all the
relevant excitation processes leading to dissociation,are
sufficiently known to incorporate them in this model. Because
of too many coupled processes it is not yet clear if the nor-
malization with respect to the density can successfully be
carried through also in this case. For fast heating of the
electrons dissociation and ionization rise simultaneously
because both have to be achieved by colliding electrons, in
contrast to thermal dissociation and ionization. The time
scale of ionization is then determined by the slowest rate
coefficient involved.




3) The assumption of homogeneity

Because of the presence of the discharge tube walls temperature
and density gradients exist and the assumption of homogeneity
will in general not be justified. In addition the rather high
current density necessary to ionize the gas brings about
Lorentz forces which in turn lead to a compression of the
plasma. Accordingly the main processes neglected are diffusion
and compression of the plasma. In order to get a feeling for
how these processes affect the similarity laws introduced in
the second chapter the variation of the characteristic diffusion
time and of the characteristic compression time can be compared
with the characteristic ionization time of discharges which
obey the similarity relations, that is if i = j/nH stays un-
changed.

The time scale of the compression of a cylindrical plasma by
axial currents. according to the snow plow model 12, 13)iration
instance, is given by the normalized compression time:

R
TWFZ(R%%?T) -(%]ét:f (33)

with R being the tube radius, § =XW_ MW the mass density of
the plasma and 4¥£ the rise of current with time at t = O.
Following the presgription given by the similarity for ioni-
zation and introducing i = I/F . ny and T = nyt, with F
being the area where the current flows, yields the proportion-
ality by neglecting all constants:

TJW OC nl-—/ Tc‘m (34)
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The compression time scales indeed differently with the
ionization time for varying densities, but the dependence
on the density is not particularly strong.

A source of particle losses is diffusion toward the walls.
Assuming ambipolar diffusion with its diffusion coefficient
inversely proportional to the filling density Ny the
characteristic diffusion time compares with the character-
istic ionization time as:

-2
T:D,‘,jf o nH sz (35)

The discharge tube dimensions were kept unchanged of course.
The proportionality in relation (35) implies that the diffusion
time is getting shorter towards lower densities as compared

to the ionization time. That is,diffusion can become dangerous
at low pressures.

A remark on the electron ion relaxation time

In chapter III examples of solutions for the differential
equations (lo) and (14) in which negligible energy transfer
from the electrons to the ions and to the neutrals, were given.
The reason for this was to have a rather simple and clear model
for checking the validity of the similarity relations. The
current density necessary to ionize the gas in a given time
should therefore be regarded as a minimum value. If the
assumption of negligible relaxation is satisfied can be checked
in comparing the relaxation time with the ionization time. The
normalized electron ion relaxation time in the units used above
is given by the expression:




where the Coulomb logarithm has been set equal to In A= =='oR
This time has to be compared with the times in figures 1, 2 and
3. Except for the case w = loo the relaxation time is short
compared with the ionization time and the ions are heated as
the electrons. This however, will not slow-down the ionization
considerably. The error made in neglecting the heating of the
ions is less than a factor two in the ionization time.

5) A preliminary comparison with experimental data.

Results from a preheating discharge by a short,one microsecond
long current pulse have been reported by Eberhagen et al. 14).
Although the behaviour of such discharges is quite complicated
because of rapid compressions early after breakdown, it could
be seen that effective ionization occurred only in those regions
of the discharge where the conditions as described by the
solutions of chapter III are at least met for the current
density and for the electron temperature. Unfortunately the
experiment to date has not permitted a check of the similarity
stated above because of too little freedom in varying the
parameters.
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Fig.2. &X(T) and Te('l?') for three different filling densities
and a normalized electric field of w=100.
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Fig.4. The normalized current density i as a function of the
degree of ionization o« for various fields w.
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Fig.5. The normalized current density i as a function of
the ionization time T,.The dashed curve shows the
approximation described on page 13.
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Fig.7. A comparison of the currents i(&X) with the critical
currents ic for which the electron drift velocity

reaches the electron thermal velocity.
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